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A magnetic field suppresses turbulence and thermal convection in a Czochralski 
crystal puller. The amounts and distributions of dopants and oxygen in the crystal 
are determined by the motion of the molten silicon during crystal growth. This paper 
presents analytical solutions for the melt motion in a Czochralski puller with a strong, 
uniform, axial magnetic field. The relatively small electrical conductivity of the 
crystal plays a key role in determining the flow. Certain combinations of crystal and 
crucible rotation rates lead to flow patterns with a large volume of almost stagnant 
fluid under most of the crystal face. The values of these rotation rates depend on the 
magnetic field strength. 

1. Introduction 
Much of the dislocation-free single-crystal silicon used in electronics is grown by 

the Czochralski process. Pure polycrystalline silicon is placed in a quartz crucible and 
is melted by graphite heaters placed around the crucible. The crystal growth is 
initiated by touching a single-crystal seed to the middle of the melt surface (see 
figure 1). Dopants are added to the melt to give the crystal particular electrical 
properties, while oxygen and small quantities of other contaminants enter the melt 
because the molten silicon slowly dissolves the inside surface of the quartz crucible. 
The dopants, oxygen and other contaminants either evaporate from the free surface 
of the melt or enter the crystal. Zulehner (1983) states that ‘less than 1 % of the 
reacting oxygen arrives in the crystal and more than 99 % of the oxygen evaporates 
out of the melt in the form of SiO ’. The crystal puller is swept by a downward flow 
of argon to carry the SiO from the free surface and any CO from the heaters away 
from the crystal. The crystal is grown until the crucible is almost empty, and a crystal 
with a diameter of 8 cm and a length of 1 m can be grown in approximately 12 hours. 

One objective is to have controllable, uniform concentrations of dopants, oxygen 
and other contaminants in the crystal. Oxygen is not entirely bad since small 
quantities of oxygen prevent warping of the wafers sliced from the crystal when the 
wafers are heated in the production of integrated circuits. The amount and uniformity 
of each concentration in the crystal depends on the motion of the melt during crystal 
growth. The melt motion is driven by the buoyancy and free-surface thermocapillarity 
associated with the radial temperature gradient and by the rotations of the crucible 
and crystal. 

The crucible is rotated in order to minimize the effects of any slight azimuthal 
variations in the heating. The thermal convection can involve an undesirable, 
large-scale periodic motion, but this motion can be suppressed by rotating both the 
crucible and crystal with certain different angular velocities. The rotation and 
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FIGURE 1 .  Czochralski crystal growth with a uniform, axial magnetic field B. The cylindrical 
coordinates r and z are normalized with the inside radius of the crucible. 

shearing stabilize the flow, and the centrifugal pumping in the crystal-face boundary 
layer can overwhelm the radially inward flow due to thermal convection. The 
meridional motion (in vertical planes through the centreline) then consists of two 
circulation cells: one small cell under the crystal face and one large cell with flow out 
along the crucible bottom, up the vertical crucible wall, in along the free surface and 
deflected down at  the crystal’s edge by the smaller cell (Langlois 1981). This two-cell 
circulation prevents direct flow from the crucible to the crystal and produces a more 
uniform radial oxygen distribution in the crystal because of its radially outward mass 
transport on the crystal face. 

Even after the large-scale periodic component of the thermal convection is 
suppressed, there is still small-scale, statistical periodicity because the flow is 
turbulent. One benefit of the turbulence is that it produces more uniform concentra- 
tions in the melt at  each instant, which result in more radially uniform concentrations 
in the crystal. The enhanced mass transport of oxygen due to turbulence can be either 
a benefit or a penalty : enhanced oxygen transport to the free surface is a benefit, 
but enhanced transport to the crystal is a penalty. The principal disadvantage of the 
turbulence is that it produces fluctuations in the heat transfer to the crystal. The 
crystal growth rate is a function of the local temperature gradient, so that, if this 
temperature gradient fluctuates, then the growth rate fluctuates. The crystal 
structure then has very undesirable microscopic non-uniformities. 

Since molten silicon has an electrical conductivity which is comparable to that of 
mercury, the turbulence can be suppressed by applying a magnetic field during 
crystal growth. The magnetic field also suppresses the steady components of the 
meridional circulations, thus decreasing the total oxygen transport to both the 
crystal and the free surface. However, when we suppress turbulence and thermal 
convection, we lose their benefits as well as their penalties. In  particular, we lose the 
turbulent transport between the streamlines of the motion, which keeps the oxygen 
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and dopant concentrations uniform in the melt. Thus we may gain microscopic 
structural uniformity at the cost of unacceptable radial variations of oxygen and 
dopant concentrations in the crystal. In addition, the amount of oxygen in the crystal 
depends on the relationship between the oxygen transport rates to the crystal and 
to the free surface. A greater reduction in the transport to the free surface than in 
that to the crystal produces a larger oxygen concentration in the crystal, particularly 
in the part grown at the end of the process because it ingests the accumulated 
reservoir of oxygen in the melt. With magnetic Czochralski, we need a much better 
understanding of the melt motions, so that we can hopefully find a combination of 
crucible and crystal rotation rates for each magnetic field strength, which produces 
crystals with both microscopic and macroscopic uniformity of structure and 
concentrations. 

This paper presents analytical solutions for the melt motions in a Czochralski 
crucible with a steady, uniform, axial magnetic field, produced by a solenoid placed 
around the heaters (Hoshikawa 1982 or Kim, Schwuttke & Smetana 1981). Previous 
treatments involve finite-difference solutions ofthe Navier-Stokes, heat and Maxwell’s 
equations (Langlois t Walker 1982). There are several advantages to the present 
analytical solutions. First, analytical techniques permit the discovery and investig- 
ation of some physical phenomena which can easily be lost in the complexity of the 
numerical analysis. For example, we show here that the small electrical currents 
which flow through the crystal play a key role in determining the melt motion. All 
previous treatments have erroneously assumed that the crystal is an electrical 
insulator because its conductivity is only 3 % of that of molten silicon. The analysis 
reveals that an important electrical current is that in the boundary layer on the 
crystal face. This boundary layer has a high electrical resistance because it is thin, 
so its resistance is comparable to that of the crystal. The boundary layer and the 
crystal are resistors in parallel, and the division of the electrical current between them 
strongly affects the melt motion. 

The melt motion depends on the magnetic field strength, on the angular velocities 
of the crystal and of the crucible, and on the instantaneous melt depth. As their second 
benefit, the analytical solutions facilitate the investigation of melt motions for all 
possible combinations of field strength, angular velocities and melt depth. On the 
other hand, it is impractical to repeat the numerical analysis for very many points 
in this rather formidable parameter space. The analysis reveals that the flow pattern 
sometimes changes radically with quite small changes in the ratio of the angular 
velocities, so that certain very important, but narrow, ranges of this ratio can be easily 
missed in a numerical sampling. 

The flow with an axial magnetic field is axisymmetric, but the flow with a steady, 
transverse magnetic field is three-dimensional. The third benefit of the present 
analytical approach is that it can be applied with comparable effort to the 
three-dimensional flows with transverse fields, and the results of this three-dimensional 
analysis will be presented in a future paper. On the other hand, the size of the data 
arrays needed for reasonable resolution for a three-dimensional flow make the 
numerical treatment of flows with transverse magnetic fields impractical. 

m/s, while 
the melt depth decreases a t  a rate of 4.2 x lop6 m/s. These velocities are so small that 
we can treat the melt motion as a steady flow with constant melt depth and with 
zero axial velocity on the crystal face. However, we must investigate the flows for 
different melt depths in order to see how the melt motion evolves during the growth 
of a crystal. 

In a typical Czochralski furnace, the crystal grows at a rate of 2.3 x 
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We assume that the magnetic field strength B is sufficiently large that viscous 
effects are confined to boundary and free shear (interior) layers, and that the inertial 
forces associated with the meridional motion are everywhere negligible compared to 
the electromagnetic (EM) body force. The key to this inertialess assumption is that 
the meridional velocity decreases as B-2, while the EM body force increases as B2, 
as B increases, so that the interaction parameter, which must be large, increases as 
B4. We conclude that the present inertialess analysis does not apply for a typical 
crystal grower with B = 0.05 tesla (500 gauss), provides a rough, but qualitatively 
correct, picture for B = 0.1 T, and improves very rapidly as B increases. This 
conclusion is tentative because there are no published experimental results to confirm 
it, and it is based on a rough comparison with erroneous numerical results. 

The azimuthal motion is independent of the meridional one, and solutions for the 
azimuthal velocity and associated variables are presented in $3. The meridional 
motions driven by the centrifugal force associated with the azimuthal velocity and 
by buoyancy can be treated separately, and solutions for the motion due to the 
centrifugal force are presented in $54 and 5. For the buoyancy, the momentum and 
Maxwell's equations give explicit expressions for the velocity, pressure and free-surface 
deflection in terms of the unknown temperature. Introducing the sum of the 
buoyancy and centrifugal-force velocities into the heat equation gives a nonlinear 
equation involving only one unknown, temperature. This equation can be solved 
analytically for the boundary and free shear layers, but numerical analysis is required 
for the inviscid core regions, where thermal convection and conduction are comparable. 
The necessity of numerical analysis again limits our ability to explore all possible 
combinations of the controlling parameters. Here, we investigate the isothermal 
motion and identify parameter combinations which give promising flow patterns. In 
a future paper we will present numerical solutions of the heat equation for these 
particular parameter combinations. 

2. Problem formulation 
Our first assumption is that the Boussinesq approximation holds, i.e. density 

variations are ignored except in the gravitational body force, and here the density 
is a linear function of temperature. All other physical properties are assumed to be 
constant. Our second assumption is that the magnetic Reynolds number 

R, = p d L 2  @ I ,  

so that we can neglect the magnetic field produced by the electrical currents in the 
melt and in the crystal. Here, p and IT are the magnetic permeability and electrical 
conductivity of the melt, while Q and L are the angular velocity and inside radius 
of the crucible (see figure 1). For silicon in a standard 8-inch crucible ( L  = 9.44 cm), 
rotating a t  Q = 1.571 rad/s (15 rev/min), R, = 0.0176. This case is used for all 
parameter values. With these assumptions, the governing equations for steady melt 
flows are 

(1 a )  

V . V = O ,  j =  v ( - V $ + V X B ) ,  ( l b ,  c) 

V * j  = 0, V - V T  = K V ~ T  ( Id ,  e )  

p( u.  V) u = - V p  -pg [ 1 - a(T - To)] 2 + j x B + p v  V2u, 

(see Langlois & Walker 1982). Here, the variables u,  p, T ,  j and $ are the velocity, 
pressure, temperature, electric-current density and electric potential function 
(voltage), while the physical constants p,  a, v and K are the density at the reference 
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temperature T,, the thermal expansion coefficient, the kinematic viscosity and the 
thermal diffusivity. In addition, B = B2 is the applied, axial, uniform magnetic field, 
2 is a unit vector and g is the gravitational acceleration. 

For axisymmetric motion, the variables are independent of 6, where (r ,  6, z )  me 
cylindrical coordinates with r and z normalized by L. For the azimuthal velocity vg, 

the characteristic velocity is OL. There are two body forces driving the meridional 
circulation in 6 = constant planes, namely buoyancy and the centrifugal force 
associated with v,, while the electromagnetic (EM) body force, j x B, opposes this 
motion. Force balances give two characteristic meridionel velocities, 

for the centrifugal and buoyancy forces, respectively, where AT is a characteristic 
temperature difference. The ratio 

with AT = 88 "C. Therefore, v, is the appropriate characteristic meridional velocity. 
The dimensionless variables (denoted here by asterisks) are defined by: 

v, = v, v:, v, = JZLV;, v, = 8, v:, 

j ,  = uOLBj:, j g  = uvc Bjf ,  

j ,  = uOLBjz, # = OL2B$*, 

T =  TO+(AT)T*, p =pgL(b-z)+p02L2p*, 

where bL is the instantaneous melt depth under the crystal. Henceforth, all variables 
are dimensionless, so we drop the asterisks. For these dimensionless variables, (1) 
becomes 

where 

The parameters ere the interaction parameter, Hartmann number and PBclet 
number, which are defined by 
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B (TI N M Pe 

0.05 0.466 178.5 1640 
0.10 7.463 357.1 410.0 
0.20 119.4 714.1 102.5 
0.30 604.5 1071 45.55 
0.50 4665 1785 16.40 

TABLE 1. Values of the interaction parameter N ,  the Hartmann number M and the PBclet number 
Pe for molten silicon in a crucible with an inside radius of 9.44 cm, rotating at 1.571 rad/s, for 
various magnetic field strengths B 

respectively. Values of these parameters for B = 0.05-0.5 tesla (500-5000 gauss) are 
given in table 1.  

The thermal boundary conditions will be discussed in a future paper. The quartz 
crucible is an electrical insulator, so that the boundary conditions at the crucible 
bottom and vertical wall are: 

v, = v, =jz = 0, vug = r,  at z = 0, (3a-d) 

v, = v, =jr = 0, vg = 1, at r = 1. (3e-h) 

We neglect the surface tension of the free surface. The importance of thermocapillarity 
will be discussed in a future paper. The atmosphere above the free surface is an 
electrical insulator, so that the boundary conditions at the free surface are: 

f = F(p-M-23v,/i3n), at z = b + f ( r ) ,  ( 4 4  

for a < r < 1.  Here, n and t are coordinates normal and tangent to the free surface 
in meridional planes, aL is the crystal radius, and 

- 0.0238 
s22L F = - -  

9 

is the Froude number for the azimuthal motion. Since p is the deviation of the 
pressure from a hydrostatic pressure with constant density and with p = 0 at z = b, 
the boundary condition (4e) for large M simply states that, if a body force produces 
a deviation pressure p, then the free surface is deflected appropriately in order to keep 
the total pressure a t  the free surface equal to zero. The velocity boundary conditions 
at the crystal face are: 

v, = v, = 0, vg = er, at z = b, (5a-c) 

for 0 < r < a ,  where el2 is the angular velocity of the crystal’s rotation, and e < 0 
if the crystal and crucible are rotated in opposite directions (counter-rotation). 

The electrical conductivity of the crystal, 6r, is much less than that of the melt. 
Near the crystallization temperature, the ratio 6 of the silicon crystal’s conductivity 
to that of molten silicon is 0.0316. Since 6 is small, previous studies have treated the 
crystal as an electrical insulator (Langlois & Walker 1982). However, i t  turns out that 
the crystal acts as a resistor in parallel to  the boundary layer in the melt on the crystal 
face, and the small electrical currents in the crystal strongly influence the melt 
motion. In the crystal, the governing dimensional equations are the equations (1  c, d) 
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with u replaced by ISc and with the crystal velocity given by esZLr8, where 8 is a unit 
vector. Using the same normalization, the equations governing the dimensionless 
electric-current density j ,  and electric potential function 4, in the crystal are : 

The boundary conditions on the crystal variables are : 

j,, = 0, at r = a, for z 3 b, 

j s+o ,  882+00, 

j,, = j z ,  q5, = q5, at z = b. 

The condition (7 b) assumes an infinitely long crystal, which is not realistic. However, 
it turns out that Qtl% of the crystal'selectrical current is confined to the bottom length 
of the crystal equal to two-thirds of the crystal radius, i.e. in b < z < b +$. Therefore, 
once the crystal length is comparable to its radius, the length is effectively infinite 
for the electrical problem, and the condition (7b) is realistic. The conditions (7c, d) 
state that the normal current and the voltage are continuous across the crystal-melt 
interface. 

Here, the crucible bottom and the crystal face are assumed to be plane and parallel. 
An actual crucible has a spherical bottom with a large radius (45.1 cm for a standard 
8-inch crucible). In  addition, the crystal face is an isotherm for the thermal- 
conduction ptoblem in the crystal. The crystal receives heat from the melt and loses 
it by radiation and conduction from the exposed surface, so that isotherms, including 
the crystal face, are concave upward. Therefore, the crucible bottom and crystal face 
are not actually parallel. Previous studies of magnetohydrodynamic flows have 
indicated that the flow between slightly divergent surfaces may be radically different 
from that between parallel surfaces, and that slopes became significant when they 
are comparable to M-' (Petrykowski & Walker 1984). The values in table 1 indicate 
that 214-' is quite small, so we have also treated the flow in a crueible with a large-radius 
spherical bottom and with a slightly concave crystal face. The results are virtually 
identical with those for the geometry in figure 1, so that the present geometrical 
simplifications &re justified. 

Our third asmniption about parameter values is that N is slifficiently large that 
the terms in the equations (2a-c) which are multiplied by N-' can be neglected 
everywhere, The values in table 1 indicate that this inertialess approximation is 
certainly invalid far 3 = 0.05 T, and roughly correct at best for B = 0.1 T, but that 
it improves rapidly as B increases. We note that our first assumption involves a 
parameter since the Boussinesq approximation is the leading term in an asymptotic 
expansion for small values of the parameter a(AT), which is 0.001 24 here. 

Our fourth parametric assumption is that M B 1, so that M-' is the small 
parameter for asymptotic expansions for the flow variables in certain subregions of 
the melt. The subregions (shown in figure 2) are the outer (0 )  and inner (i) cores with 
all dimensions O(l) ,  the Hartmann layers (h) with O(2M-l) thickness, the free shear 
layer (f) at r = a with O ( M 4 )  thickness, the vertical wall layer (w) at r = 1 with O(214-t) 
thickness, and the intersection regions (I) with O(M-l)  x O ( M 3 )  dimensions in 
meridional planes. The free shear and vertical wall layers are thicker than the 
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z = O  

FIGURE 2. Meridional section showing subregions of the melt for M $ 1. 

Hartmann layers because the former are parallel to the applied magnetic field 
(Petrykowski & Walker 1984). The variables in each subregion are written as 
appropriate asymptotic expansions for large M ,  and the expansions in adjacent 
regions are matched. Henceforth, a variable with a subscript, i, 0, f, etc. denotes the 
leading term in the asymptotic expansion for that variable in the inner core, outer 
core, free shear layer, etc. 

The inertialess approximation neglects the meridional convection of the angular 
momentum in the azimuthal motion, which is represented by the left-hand side 
of ( 2 b ) .  As a result, the boundary-value problem for the azimuthal motion can be 
solved independently of the meridional problem, and this solution is presented in 
the next section. 

3. Azimuthal motion 
are governed by the modified equation ( 2 b )  with the 

left-hand side replaced by zero, by the equations ( 2 e , f ,  h, 6), and by the boundary 
conditions (3c ,  d,  g, h, 4 b ,  c ,  5c,7). In the outer core, adjacent Hartmann layers, 
vertical wall layer and adjacent intersection regions, the solution 

The variables we, j,., j, and 

Wg = r ,  = C,+$2, j, = j ,  = 0 ,  (8a-c) 

satisfies the equations ( 2 b ,  e, f, h)  and the conditions (3c ,  d,  g, h, 4b ,  c) identically, i.e. 
to all orders in M .  Here, C, is a constant voltage. The only possible perturbation to 
this rigid-body rotation with the crucible would arise in matching the free-shear-layer 
solution. However, we have found the first three terms in the asymptotic solution 
for the free shear layer, and all three match this rigid-body rotation for r > a without 
perturbing it. 

In actual crystal growth with an axial magnetic field, the principal perturbation 
of this outer rigid-body rotation arises because of thermal convection in meridional 
planes. As fluid near the bottom moves outward, its v8 decreases to conserve angular 
momentum. Similarly, as fluid near the free surface moves inward, its we increases. 
Since the radial voltage gradient, a$/&, is proportional to we, the voltage difference 
between r = a and r = 1 is greater at  the free surface than at  the bottom, and this 
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vertical variation of the voltage difference drives a circulation of electric current in 
meridional planes. The EM body force due to this current slows the fluid near the 
free surface and accelerates the fluid near the bottom, thus restoring the rigid-body 
motion. As the magnetic-field strength increases, the EM body force is much greater 
than the angular momentum transport, i.e. a slight deviation from rigid-body motion 
produces a small current, which in turn produces a sufficiently large EM body force 
to restore rigid-body motion. Langlois & Lee (1983) include inertial effects, treat the 
crystal as an electrical insulator and present numerical results for the meridional 
circulation of electric current in their figures 2 and 4. For comparison with the 
inertialess solution (8), we are interested in their current lines beyond the crystal edge, 
i.e. for r > a. In  their figure 2 ,  the numbers of current lines here are 6 for B = 0.05 T, 
3 for B = 0.1 T and 1 for B = 0 . 2  T. In their figure 4 (with a multiplied by 10 to 
investigate high buoyancy), the numbers of current lines here are approximately 30 
for B = 0.05 T, 10 for B = 0.1 T and 1 for B = 0.2 T .  Their numerical results with 
inertial effects confirm the earlier statement about the validity of the inertialess 
approximation, namely that it is invalid for B = 0.05 T, rough at best for B = 0.1 T 
and probably reasonably accurate for B = 0 . 2  T. 

In  the inner core, the variables are written as asymptotic expansions, such as 
q5 = q5i + W1q5; + 0(W2), where the prime distinguishes the O(M-') perturbations 
from the O( 1) solutions. The equations ( 2  b,  e , f ,  h) then give 

where cDi and j,, are functions of r only. The O(M-l)  solutions are given by the same 
expressions with primes added to all variables. 

The jump in the normal current across a Hartmann layer is O(M-l) ,  so that the 
boundary condition (3c) indicates that the O(1) inner-core solutions are 

(1Oa-d) 

For the Hartmann layer at the bottom for r < a, the axial coordinate is stretched 
by substituting 2 = Mz, while jrh, q5,, and vBh denote O( 1) quantities, but jzh denotes 
an O(M-') quantity. After the coordinate stretching, the equation ( 2 h )  gives #h = Gi, 
while the equations ( 2 b , f )  govern jrh and w&. The solutions which satisfy the 
boundary condition ( 3 4  and which match the 0(1)  inner-core solutions (10) are 

v, = va+(r-v&) exp(-Z), (1la) 

jrh = (r-ww) exp(-2). (1 1 b )  
The result (1 1 b )  is introduced into (2e) governing jzh, and the solution which satisfies 
the boundary condition (3c)  is 

d 
dr 

jzh = r-l [exp ( - 2) - 11 - (r2 - rv&). 

Matching the O(M-') axial currents in the bottom Hartmann layer and inner core 
determines j;,, and the solutions (9), with primes added, are 

, d@i dj;, 
vgi = --z-, 

dr dr j A  = 0. 
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The 0(1) inner-core w, (10d) is independent of z, so all the fluid on a cylinder 
r = constant has the same azimuthal velocity, although there may be shear between 
cylinders of different radii. The bottom Hartmann-layer structure, which accommo- 
dates a difference between w, and We = r on the crucible bottom, requires a radial 
current to produce the EM body force to balance the viscous shear force. This radial 
current must come from the inner core, and this requires an O(M-') vertical inner- 
core current from the top Hartmann layer to the bottom one. An O(M-') linear 
voltage drop from the crystal to the crucible is required to drive this vertical inner- 
core current. The azimuthal momentum equation (2b) indicates that there is no force 
to balance the EM body force due toj ,  in the core, soj, = 0 here, neglecting O ( W * )  
terms. The radial component of Ohm's law (2f) then implies that the induced voltage 
( u  x B), = vo must cancel the radial voltage gradient, so w& = a$;/&. If w, is a rigid 
body rotation, then jl, is uniform, the axial voltage drop is independent of r ,  and w& 
is independent of z. However, if vgi deviates from some rigid-body rotation, then the 
jii needed by the bottom Hartmann layer varies with r ,  so the axial voltage drop 
driving this current must also vary with r.  Since the induced voltage due to w h  must 
balance the radial voltage gradient at each horizontal level, w& has a linear variation 
with z, which is represented by the last term in (13c). In the next section, we treat 
the meridional motion driven by the centrifugal force associated with we, and the axial 
variation of w h  turns out to be important. Here we see that this variation is due to 
the electrical current requirements of the bottom Hartmann layer. 

For the Hartmann layer on the crystal face, the axial coordinate is stretched by 
substituting 2' = M(z-b ) .  The O(1) top-Hartmann-layer variables which satisfy the 
stretched versions of the equations ( 2 b , f ,  h), as well as the boundary condition ( 5 c ) ,  
and which match the 0 ( 1 )  inner-core solutions (10) are 

The result (14b) is substituted into the stretched equation (2e), which governs the 
O(M-') top-Hartmann-layer current jzh. The solution which matches the inner-core 
solution (13a) is 

(15) 
d d 

dr dr 

The inner-core solutions (10,13) and the Hartmann-layer solutions (11,12,14,15) are 
expressed in terms of two unknown functions of r ,  namely and a;, which are 
determined by solving for the electrical variables in the crystal. 

The equations (6a, 13) are introduced into (6c) and the boundary conditions (7a, b) 
to obtain the equation 

and the boundary conditions 

exp (2') -(erz-- ,) .  jzh = -r-l-(rz-wH)-rr-' 

VZ$, = 2s, (16) 

a $ , p  = ea, at r = a, ( 1 7 4  

$s+!jer2, as z+m, ( 1 7 4  

where the voltage at  r = 0 is set equal to zero with no loss of generality. The 
separation of variables solution for the problem (16,17) is 
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FIGURE 3. Sketch of the meridiona.1 current lines for the O(&f-') electric current. 

where X, are the zeros of J,, J,  and J1 are the Bessel functions of the first kind of 
zeroth and first order, and R = r /a ,  i.e. the radial coordinate normalized by the 
crystal radius. 

The problem (16,17)  does not involve M ,  so the solution (18) applies to all orders, 
i.e. the term !p* goes with the O(l)q5,, and each order of q5, has its own set of 
coefficients c,. The asymptotic expansion, q5, = q5,+ M-'q5;+O(Mde), is required 
because these solutions must match the top-Hartmann-layer solutions through the 
conditions (7c ,d) .  The condition ( 7 4  and the solution (14a)  give Qi = q5,(~, b), so the 
O(1) voltage throughout the inner core and adjacent Hartmann layers is given by 
the O(1) crystal voltage at the crystal face. The equations (6a ,b)  indicate that 4, 
drives an O(6) electric current, which is small because the relative electrical 
conductivity of the crystal, 6, is small (6 = 0.0316 for silicon). At the crystal face, 
the axial component of the small crystal current must equal the small axial current 
in the top Hartmann layer, so that the boundary condition (7c) ,  together with the 
equations ( 6 4  lOd, 14a, 15), becomes 

This condition determines the coefficients for the O( 1) crystal voltage (18)  : 

2ay  1 - 6) 
X,(Y + 2X,) JeCX,) ' 

c -- ' - 
where y = adM. 

The solution, (q5,-+re)/ae(i-e), is a function of R and ( z - b ) / a ,  i.e. the axial 
distance from the crystal face normalized by the crystal radius, and depends on a 
single parameter y. The current lines for the O(M-l )  electric current in meridional 
planes are sketched in figure 3. We previously found an electric current flowing down 
through the inner core and outward through the bottom Hartmann layer. This 
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FIGURE 4. Electric current lines in the crystal for y B 1.  The current streamfunction is normalized 
to have a value of one for the total crystal current. Values for the solid lines vary from 0.4 to 0.9 
in steps of 0.1. 

current flows up through the free shear layer and splits at the top intersection region 
with part flowing radially inward through the crystal and part through the top 
Hartmann layer. Both the crystal and top Hartmann layer have large electrical 
resistances, the former because its relative conductivity S is small, and the latter 
because its O(M;') thickness is small. Here M, = aM is the Hartmann number based 
on the crystal radius. The ratio of these two large, parallel resistances is reflected in 
y = S/M;' = aSM. If y -4 1, the crystal is an electrical insulator, and all the O(M-') 
current flows through the top Hartmann layer. In  this case, the radial currents in 
the top and bottom Hartmann layers are equal and opposite, and the jumps in w, 
for these two layers are equal. Therefore, wei = +( 1 + B )  r ,  i.e. the inner core rotates 
as a rigid body with the average of the crystal and crucible angular velocities. At  
the other extreme, y & 1, the crystal is a much better conductor than the top 
Hartmann layer, and all the current flows through the crystal with only an O(7-l) 
deviation of $, from +r2. Since there is no current in the top Hartmann layer, there 
is no jump in across the layer, and vgi = w, i.e. the inner core rotates as a rigid 
body with the crystal. The jump in vo across the bottom Hartmann layer for y % 1, 
is twice that for y -4 1, so there is twice as much O(M-') electric current circulating. 
The current lines in the crystal for y %- 1 are presented in figure 4 .  The crystal sees 
a source of electric current at  its bottom edge, r = a, z = b,  which represents the 
current entering from the top intersection region. Most (96 % ) of the crystal current 
circulates below the dashed line in figure 4.  This dashed line reaches up to 
z = b + 0.625a, which illustrates the earlier statement that the current is mostly 
confined to the bottom length of the crystal equal to less than two-thirds of a crystal 
radius. 

As y decreases from infinity to zero, the total current decreases by a factor of two, 
the fraction of this current flowing in the crystal decreases from one to zero, and the 
inner core azimuthal motion shifts from a rigid-body rotation with the crystal angular 
velocity to a rigid-body rotation with the average angular velocity. However, at finite 
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FIGURE 5. Relative angular velocity function for the inner-core azimuthal velocity. 

values of y ,  there is a radial variation of the electric current division between the 
crystal and the top Hartmann layer. Figure 4 shows that the current entering the 
crystal directly from the intersection region sees a small normal area near the crystal 
edge and therefore sees a large local electrical resistance. Once past this bottleneck, 
the current spreads over a larger normal area with a correspondingly smaller 
resistance. Therefore, the effective resistance of the crystal is large at the edge and 
small elsewhere. On the other hand, the top Hartmann layer has the same O(M;') 
normal area at every radius. For a finite value of y ,  the electric current leaving the 
intersection region sees the large resistance of the crystal edge, so virtually all the 
current enters the Hartmann layer at r = a .  As the current flows radially inward, the 
effective resistance of the adjacent crystal decreases, so the current splits and a 
significant fraction of it flows up into the crystal for r < a.  Thus, near r = a,  the 
fraction of the total current in the top Hartmann layer is nearly 1, and wgi here tends 
to the average angular velocity times r ,  but, for r < a, this fraction is less than 1, 
and wgi tends more towards motion with the crystal. The inner-core azimuthal motion 
deviates from rigid-body rotation for finite y ,  even though it is two different rigid- 
body rotations for y %- 1 and y Q 1 .  

The 0(1 )  inner-core azimuthal velocity can be expressed in terms of a relative 

(20) 
angular velocity w :  

wgi = w+r(l-e)w, 

where w is a function of R and depends only on the parameter y. The values w = 0, 
1 and 0.5 correspond to rotations with the crystal, with the crucible, and with the 
average angular velocity, respectively. Graphs of w for various values of y are 
presented in figure 5. The effect of the high electrical resistance of the crystal edge 
region is particularly evident in the graphs for y = 8.125 to 32.5. The angular velocity 
of the central column of fluid under the centre of the crystal deviates from the 
crystal's angular velocity by less than 20 yo of the crystal-crucible angular-velocity 
difference, indicating that most of the current at these small radii is in the crystal. 



250 L. N .  Hjellming and J .  8. Walker 

For these values of y ,  there is large shearing beyond R = 0.8 as the fluid near the 
free shear layer tends towards the average angular velocity (w = 0.5), indicating that 
most of the current near R = 1 is in the top Hartmann layer. The effective resistance 
of the crystal edge region is so great that the motion for R > 0.8 deviates significantly 
from that of the crystal, even for y = 325. In the parameter y = SB(aL)(cr/pv)f, 
everything is a physical constant except the magnetic field strength B and the 
crystal radius (ah). For an 8 cm diameter silicon crystal, y = 4.643, 8.125 and 16.25 
correspond to B = 0.10 T, 0.17 T and 0.34 T, respectively, which fall in the range of 
field strengths generally being considered for magnetic Czochralski (Lee, Langlois & 
Kim 1984). Therefore magnetic Czochralski flows involve large radial shear in the 
azimuthal motion under the crystal. 

The solutions for the O(M-2) axial currents in the inner core and adjacent 
Hartmann layers would be required in order to determine @; by solving for 4;. 
However, in the O(M-’) inner-core solution (13c), the second term representing the 
axial variation of w h  is important and is now completely determined, but the first 
term involving @; merely adds an O(M- l )  radial pressure gradient. Therefore, the 
solutions for @; and the associated variables are not presented here. 

For the free shear layer, the radial coordinate is stretched by substituting 
6 = Mi(r - a). The variables are replaced by the asymptotic expansions 

w g  = W& + M-:w;, + O(M-I),  

$ = Gi(a) + M-i$f + M-l$; + O(M-t),  

j, = M-Y, + M+& + O(M-2), 

j, = M-3,, + M-Yi, + O(M-t).  

The equations (2 b,  e,f, h) become 

and the same equations with a prime added to each term. Here, the equations (2f, h) 
have been combined to eliminate q5 and to obtain the equation (21c), while 
h, = h, = 0, 

hi = - a - Y ~ .  

The intersection regions on the bottom (at z = 0, for all 6) and on the crystal face 
(at z = b, for 5 < 0) have exponential structures to accommodate jumps in vo. The 
solutions for we and j, in these intersection regions are the same as the solutions 
(1 1,14 b, c) with ow replaced by wM or oh (evaluated at z = 0, b) and with r replaced 
by a or C, for the O(1) or O ( M 3 )  solutions, respectively. To obtain the boundary 
conditions on j,, and j;, at z = 0, b, we introduce the O(M) axial stretching, the O(M4) 
radial stretching and the solutions for the radial electric currents in the intersection 
regions into (2e). We integrate this equation from 0 to arbitrary 2 or 2’ to obtain 
the solutions for the O ( M 3 )  and O(M-l )  axial currents in the intersection regions. 
Matching the free-shear-layer solutions gives 
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and the same conditions with a prime added to each term. Here, h, = 0, the plus 
applies a t  z = 0, for all [, where h; = a-'v,,([, 0) - 2 ,  and the minus applies at  z = b, 
for [ < 0, where 

h; = - M 6 2  (a,  b )  -a-Gef([, b )  + 2 ~ .  
az 

The first term in hj at z = b can be expressed in terms of vei and dv&/dr, a t  r = a, 
using the boundary condition (19)  and the result vBi = a#,/ar(r, b). 

For an intersection region adjacent to a solid surface, the O( 1) and 0 ( M - t )  tangential 
velocities vary exponentially, and these variations lead to O(M-4) and O(M-') jumps 
in the normal current and normal velocity across the region, as reflected in the 
conditions (22) .  For an intersection region adjacent to a free surface which is nearly 
perpendicular to the free shear or wall layer, Hays & Walker (1984)  show that the 
O(1) and O(M-t) tangential velocities are independent of the stretched normal 
coordinate, thus satisfying the boundary conditions ( 4 c ,  d )  automatically. If the 
normal derivatives of the O(1) and O(M-i) tangential velocities in the free shear or 
wall layer are not zero at the free surface, then the O(M-') and O(M-i) tangential 
velocities in the intersection regions vary exponentially and accommodate the jumps 
in shear stress across the region. These variations imply O(M-i) and O ( M P )  jumps 
in normal current and normal velocity across the region. The component of the unit 
normal to  the free surface, which is normal to the free shear or wall layer, must be 
no more than O ( M 3 )  for these statements to apply, and for the present problem this 
restriction means that the Froude number is at most O(M+),  which is indeed the case. 
Therefore, the boundary condition (4b)  gives 

jzf =j& = 0, at z = b, for [ > 0. (23)  
If the component of the surface normal perpendicular to the free shear layer is 0(1), 
i.e. if F = O ( l ) ,  thenji, is given in terms of ajZf/3z,jrf and av,/a[, at z = b, but these 
three functions turn out to be zero here, so the conditions (23)  actually apply with 
no restrictions on the Froude number. 

Matching the free-shear-layer variables with the inner- and outer-core solutions 
( 8 , 1 0 , 1 3 )  gives C,  = dji(a)-+zZ, as well as 

ver+h,, j r f + O ,  j z f + h 5 ,  as [+-co, (24 a-c) 

vB+h6, j,+O, j z f + O ,  as [+a, (24d-f 1 
and the same conditions with a prime added to each term. Here 

dvei h4 = vei(a), hi = f x  (a )  

h, = a, h: = [. 
The solutions of the problems (21-24) are 

~ g t  = ,t[a+v,(a)]+,t [ u - w ~ ( u ) ]  E,  ( 2 5 4  

v h  = + [ ~ - u - ' v ~ ~ ( u ) ] ~ + %  l + - ( a )  +- 1--(~) (C;E+2e), (25b)  [ ;: 1 x ;: 1 
9 FLM 164 
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where 
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E = erf [!jc(b- z)-:], 

e = n- f (b - z ) i  cxp[--fC(b-~)-~]. 

The solutions for jrP, jif, jzf and jif are obtained by substituting the solutions (25) into 
the equations (21a ,c) ,  by integrating the equation (21c) with respect to [, and by 
using the conditions (24f) to  evaluate the integration functions of z. The solutions 
for $f and 4; are obtained by substituting the equations (21a, 25) into the stretched 
equation (2 f ), by integrating the result with respect to 5, and by using the conditions 

$f-+4, $f4,+iPf”, as c-Q, 
to  evaluate the integration functions. Here C,  is a constant, O(M-’) voltage in the 
outer core which is determined by the value of @(a). 

The solution (25a) accommodates the difference between vei(a) in the inner core 
and v, = a in the outer core, and it involves exactly the total, O(M-l)  axial current 
already assumed in the electric circuit sketched in figure 3. The solution (25b) 
accommodates the difference between dv,Jdr(a) in the inner core and dv,/dr = 1 in 
the outer core, and i t  incorporates the effects of the curvature of the free shear layer, 
which are represented by hi and hi. However, this O(M-:) free-shear-layer solution 
does not produce an O(M-?) perturbation in either the inner or outer cores. The 
solutions for the next terms in the asymptotic expansions for the free shear layer, 
which would be denoted by double primes, would be governed by precisely the same 
equations (21) and boundary conditions (22-24) with different expressions for hi,  for 
j = 1-6. This solution accommodates the difference between vh(a, z )  and d2vei/drz(a) 
in the inner core and the corresponding zero values in the outer core, and i t  completes 
the electrical circuit for the O(M-2) inner-core axial current. This solution is not 
presented here simply because i t  is lengthy and not very informative. 

4. Isothermal meridional motion 
The variables v,, v,, j,, p ,  T and f ( r )  are governed by the equations (Za, c )  with the 

terms which are multiplied by N-l replaced by zeros, by the equations (2d,g,i) ,  by 
the boundary conditions (3a,  b ,  e, f, 4a, d, e ,  5a, b )  and by thermal boundary conditions 
which will be presented in a future paper. If we assume temporarily that T ( r ,  z )  is 
known then the problem without the equation (2i) is a linear problem governing vr, 
v,, j,, p and f. The only inhomogeneous terms in this problem are the two body forces, 
namely the centrifugal force, -v t /r ,  in (2a) and the buoyancy force, vbcT, in the 
equation ( 2 c ) .  We can solve separately for the meridional motions due to the 
centrifugal force and due t o  the buoyancy force, where the former is completely 
determined since v, is now known, while the latter is expressed in terms of integrals 
of the actually unknown function T ( r ,  2). The two velocities are added together and 
introduced into (2i) to obtain a nonlinear equation involving only one unknown, 
T(r , z ) .  The expressions for v,, v,, j,, p and f due to the buoyancy force and the 
numerical solutions of (2 i) with the appropriate thermal boundary conditions will 
be presented in a future paper. Here we present the solutions for the motion due to 
the centrifugal force, i.e. the isothermal meridional motion for T = 0. 

I n  the outer core, vertical wall layer and adjacent Hartmann layers and intersection 
regions, v, = r to  all orders in M .  The solutions 

v, = v, = j, = 0, p = $(r2-a2) ,  f = Fp (26a-e) 
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satisfy (2a ,  c ,  d ,  g ) ,  with T = 0, and the boundary conditions (3a ,  b, e ,  f, 4a ,  d ,  e )  
identically, i.e. to all orders in M .  Therefore, for r > a, the only meridional motion 
is that due to buoyancy, and the centrifugal force merely produces a radial pressure 
gradient which deflects the free surface into a parabola. 

In the inner core, the variables are written as asymptotic expansions, such as 
w, = w,i+M-1vii+O(M-2). The jump in v, across either Hartmann layer is O(N-'), 
so that the O(1) inner-core solutions which satisfy (2a , c ,d ,g )  and the boundary 
conditions (3  b ,  5 b )  are 

vri = vZi = j, = 0, - dPi = & (27a-d) 
dr r ' 

where vgi is given by (20) .  The same axial stretching is used for each Hartmann layer, 
and 'U,h,jeh and p h  denote o(1) quantities, while v,h denotes an O(M-l) quantity. The 
equation (2c)  indicates that ph = pi(?-) in both Hartmann layers. The solutions of the 
stretched equat,ion (2a ) ,  with vm given by either (11 a)  or (14c) for the bottom or top 
Hartmann layer, respectively, must also satisfy (29)  and one of the boundary 
conditions (3a,  5a) .  The solutions which also match the core solutions (27) are 

l),h = -j, = r-lv,(r-vei) 2 exp ( -2)++--1(r-vgi)2 [exp (-2)-exp ( - 2 4 1 ,  (28a)  

w,h = -j, = -r-lvgi(er-v,)Z' exp(Z')++-1(sr-voi)2[exp(Z')-exp ( Z Z ' ) ] ,  (28b) 

for the Hartmann layers on the crucible bottom for r < a and on the crystal face, 
respectively. 

We introduce the solutions (28)  into the stretched equations ( 2 4 ,  and we integrate 
from 2 = 0 or 2' = 0, where the conditions (3b,  5 b )  indicate that v,h = 0, to arbitrary 
2 or 2' in order to obtain the solutions for v,h in both Hartmann layers. Matching 
the O(M-') axial velocities in the Hartmann layers and the inner core leads to the 

( 2 9 4  
boundary conditions 

d 
dr 

.Ii = ---I- (r&,), at z = 0, 

where 

0 

&, = V,hdZ' =~-1(€r-- , ) (€T+5Vgi) ,  (30b) 
-W 

and v,h in the definitions of &, and &, are given by the solution (28a)  and the solution 
(28 b) ,  respectively. The O(M-l)  dimensionless volumetric flow rate across the cylinder 
with radius r is given by 2xr &,(r) or 2xr QS(r)  for the Hartmann layer on the crucible 
bottom for r < a or on the crystal face, respectively. 

The O(M-l)  inner-core centrifugal force in (2a )  is - 2vei vh/r ,  where vei and v& are 
given by (13a,c, 20). The O(M-') inner-core variables which satisfy (2a ,c ,  d , g )  and 
the boundary conditions (29)  are 

dp; 2 d-- (1 -8) 
v, d@! b 

dr -r[ dr a 

9-2 
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is a stream function for the O(M-') inner-core meridional motion, while 

The functions vei/a, &,/a and QJa in the stream function (32)  are functions of 
R which depend on the ratio of rotation rates E and the resistance ratio y ,  but which 
are independent of a and b. Therefore, the only effect of the melt depth is represented 
by the factor ( b / a ) 2  in (32) .  

The key to the meridional solutions (26-32) is the axial variation of vg. The equation 
(2c)  indicates that p is independent of z in the cores and Hartmann layers, neglecting 
O(M-2) terms. If vg is also independent of z,  then dpldr can balance the centrifugal 
force everywhere, and there is no meridional motion. This is the case for the outer- 
and the 0 ( 1 )  inner-core solutions (26,27). The O(1) pressure gradient, which balances 
the centrifugal force due to vH, is continuous across the Hartmann layers, but ugh 
must vary from vgi to r or w,  as represented by the solutions ( l l a ,  14c).  Therefore, 
the O(1) pressure gradient and centrifugal force do not balance in the Hartmann 
layers, and the difference drives an O(1) radial velocity in each layer, given by the 
solutions (28). Since this radial velocity is confined to the thin Hartmann layers, it 
represents an O(M-') volumetric flow rate which is drawn from the inner core and 
propelled radially outward towards the free shear layer for Q > 0, or in the opposite 
direction for Q < 0. The sign of Q, or Qs depends on the relative magnitudes of the 
net effective centrifugal force due to vOh and of the centrifugal force due to v&; when 
the former exceeds the latter, there is radially outward flow, and Q > 0. Since the 
centrifugal pumping in the Hartmann layers draws fluid from or discharges fluid into 
the inner-core, there is an O(M-') inner-core meridional flow driven by the Hartmann- 
layer pumping and represented by the last two terms in the stream function (32) .  

Since the O(M-') inner-core vhi varies linearly with z, dp;/dr can only balance an 
axial average of the associated centrifugal force. The difference between the pressure 
gradient and the local centrifugal force at each elevation drives an O(M-') inner-core 
meridional flow, which is represented by the first term in the stream function (32) .  
This circulation is symmetric about z = !jb and vanishes at  z = 0, b. The inner-core 
meridional motion driven by its own centrifugal pumping is associated with the axial 
variation of vh, and, in the previous section, we saw that this variation is associated 
with the deviation of vH from a rigid-body rotation. The function G, given by (33b) ,  
is a measure of this deviation and depends only on R and the parameter y.  From 
figure 5 ,  we see that both terms in (2 are relatively small for 0.2 < R < 0.7 for most 
values of y .  Both terms are larger for R < 0.2, but tend to cancel since the first and 
second derivations of w are positive and negative, respectively. However, both terms 
are large and positive for R > 0.7, so that the circulation due to the inner-core 
pumping tends to be concentrated near the free shear layer, 0.7 < R < 1, coinciding 
with the large shearing in vugi. 

In order to develop a complete picture of the isothermal meridional motion for 
various values of the parameters y ,  E and ( b l a ) ,  we first separate the motions due 
to the inner-core and Hartmann-layer centrifugal pumping, i.e. we consider the first 
term and the last two terms in the stream function (32)  separately. Plotted separately 
as functions of R and .$ for 0 < R,  6 < 1, the streamlines for the two motions depend 
on y and B, but are independent of (b la) .  
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FIQURE 6. The O(M-l)  radial volumetric flow rate Q in the Hartmann layers. (a) y = 4.643, (b)  
y = 8.125, (c) y = 16.25. In all three graphs: 1 = (QJaR) at R = 0, and 2 = (Q,/aR) at R = 1 ,  
3 = (QJaR) at R = 0, and 4 = (QJaR) at R = 1 ,  where Q, and Q, are the flow rates in the Hwtmrtnn 
layers on the crystal face and on the crucible bottom, respectively. 



256 L. N .  Hjellming and J .  S .  Walker 

Figure 6 presents graphs of (Q,/aR) and (Q,/aR) at R = 0 and R = 1,  as functions 
of E ,  the ratio of the crystal’s rotation rate to the crucible’s, for y = 4.643, 8.125 and 
16.25 (B = 0.10 T, 0.17 T and 0.34 T, for an 8 cm diameter silicon crystal). Since w 
increases monotonically with R,  the value of (QlaR) varies monotonically between 
its values a t  R = 0 and R = 1 ,  so that figure 6 indicates qualitatively the magnitude 
and sign of (&/a)  for both Hartmann layers and for all R. 

For E > 1 (co-rotation with faster crystal rotation), r < vBi < Er, so that ugh > vgi 
in the top Hartmann layer and Q, > 0, while ugh < vgi in the bottom Hartmann layer 
and Q, < 0. For 0 < E < 1 (co-rotation with slower crystal rotation), er < vBi < r ,  so 
that Veh < vugi in the top Hartmann layer and Q, < 0, while vgh > vei in the bottom 
Hartmann layer and Q,  > 0. For a small and negative E (counter-rotation with much 
slower crystal rotation), the inner core is still dominated by the crucible rotation, so 
that 0 < Vugi < $. In  the bottom Hartmann layer, Ugh > vBi and Q, > 0. In the top 
Hartmann layer, ugh varies from vgi > 0 at 2’ = - oc,, through zero, to er < 0 at 2’ = 0, 
and this reversal in the azimuthal velocity means that the net centrifugal force is 
small, so that Q, < 0. The fluid near R = 0 tends.to rotate with the crystal, while 
that near R = 1 tends to rotate with the average angular velocity. As we increase 
the crystal rotation rate for counter-rotation, the inner-core fluid near R = 0 first 
ceases to rotate and then begins to rotate in the same direction as the crystal, i.e. 
vugi < 0, near R = 0. The fluid near the free shear layer is still rotating in the same 
direction as the crucible, i.e. vgi > 0, near R = 1. In the top Hartmann layer near 
R = 0, ugh < vei < 0 and Q, > 0. In the bottom Hartmann layer near R = 0, ugh varies 
from vBi < 0, through zero, to r > 0, so that now this Hartmann layer has the flow 
reversal with the associated small centrifugal force, which means that Q,  near R = 0 
decreases rapidly and becomes negative as E decreases to larger negative values. Near 
R = 1, vgi is still positive, so that Ugh > vBi in theGttom Hartmann layer and &, > 0, 
while the top Hartmann layer has a flow reversal with Q, < 0. As e decreases further, 
the radius at  which vgi = 0 increases and eventually the entire inner core is rotating 
in the same direction as the crystal, i.e. vBi < 0 for all R. Now, Ugh < vgi < 0 
throughout the top Hartmann layer and Q,  > 0 for all R. Near R = 0, vei approaches 
er, so that Ugh in the bottom Hartmann layer varies from nearly Er < 0, through zero, 
to r > 0, and the average vih is less than v&, so Q, < 0, near R = 0. Near R = 1 at 
the value of e for which vB1 = 0 at R = 1,  Ugh in the bottom Hartmann layer increases 
from vBi = 0 to r ,  so that Q, > 0, near R = 1.  However, as E decreases from this value, 
the magnitude of the negative vBi at R = 1 increases, so that ugh in the bottom 
Hartmann layer has a flow reversal with the associated small centrifugal force, which 
means that Q, near R = 1 decreases rapidly and becomes negative as E decreases. 
Finally, for E < - 1.07, for y = 4.643 (counter-rotation with faster crystal rotation), 
the inner core rotates in the same direction as the crystal (vBi < 0 ) ,  Q,  > 0, there is 
a reversal in ugh in the bottom Hartmann layer, and &, < 0, for all R. 

Comparison of the graphs in figure 6 for the three different values of y leads to the 
surprising conclusion that the results are relatively insensitive to these variations of 
y. In other words, Q, and Qc, as defined here, are relatively independent of the 
magnetic field strength for the range of strengths being considered for magnetic 
Czochralski. However, since the characteristic meridional velocity v, varies as BP2, 
and since we are dealing with an O(M-l )  dimensionless meridional circulation, a 
constant Q corresponds to a dimensional volumetric flow rate which varies as B-3. 
Therefore, the actual flows decrease rapidly as the magnetic field strength increases. 
The curves in figure 6 are all parabolas with one zero at  E = 1 (iso-rot,ation). For any 
y and R,  (Q,/aR) has a maximum of 0.3 at a small, positive or slightly negative value 
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of e .  The second zero on all four curves moves slightly towards E = 0 as y increases. 
The principal effect of increasing y is to decrease the magnitude of (Q,/aR) near R = 0 
for any E .  For y = 16.25, (Qs/aR) at R = 0 is virtually zero for all e, i.e. there is 
virtually no radial flow in the top Hartmann layer near R = 0 for any rotation rates. 
As y increases, w ( 0 )  approaches zero, so that the rotation of the central column of 
fluid near R = 0 approaches the rotation of the crystal. Therefore, the jump in vg 
across the top Hartmann layer near R = 0 approaches zero as y increases, so that 
there is no longer an imbalance between the pressure gradient and the centrifugal 
force to drive a radial flow here. 

The last two terms in the stream function (32) represent a linear variation of $ 
with 6 from RQJa at E = 0 to - RQJa at E = 1. Therefore, we can use the results in 
figure 6 to sketch the possible streamline patterns for the meridional circulation 
driven by the Hartmann-layer pumping. For E > 1,  the flow is a clockwise circulation 
around the streamlines sketched in figure 7 (a). For el < e < 1, the flow is a counter- 
clockwise circulation around the same streamlines. The specific values of E at which 
the flow pattern changes are given in table 2 for three values of y. As B approaches el 
from above, all the curves in figure 6 are rapidly approaching zero except those for 
QC at R = 1, so that the streamlines for R < 0.5 disappear and an increasing number of 
streamlines close through the inner core, bottom Hartmann layer and free shear layer. 
At E = el, a clockwise circulation near the centre of the crystal face appears, and this 
circulation grows as e decreases from el. The flow pattern for e2 < E < c1 is sketched 
in figure 7(b). At e = e2, the clockwise circulation just touches the crucible bottom 
at R = 0, and its streamlines are drawn into the bottom Hartmann layer near R = 0 
as e decreases from e2. The flow pattern for e3 < E < e2 is sketched in figure 7 (c). A t  
E = e3, the clockwise circulation just reaches the crystal edge at R = 1, and its 
streamlines enter the free shear layer as E decreases from e3. The flow pattern for 
e4 < e < e3 is sketched in figure 7 (d). At E = e4, the counterclockwise circulation near 
R = 1, 6 = 0 disappears, leaving only clockwise circulation. The flow pattern for 
e5 < e < e4 is sketched in figure 7 ( e ) .  A t  R = 1, the magnitude of Qs exceeds that of 
Qc, so that there is flow from the free shear layer into the inner core. At B = e5, the 
magnitudes of Qs and Q,  at R = 1 are the same, so that there is no flow between 
the free shear layer and the inner core. For E < c5, clockwise circulation around the 
streamlines in figure 7 (a) is recovered. 

The first term in the stream function (32) represents the meridional circulation 
driven by the inner-core centrifugal pumping, which is associated with the axial 
variation of vh. Here G > 0 for all R and y ,  so that the flow pattern changes as the 
sign of v8i changes. For E > 1, the flow is a clockwise circulation around the 
streamlines sketched in figure 8(a) .  For e6 < E < 1, the flow is a counterclockwise 
circulation around the same streamlines. At e = e6, voi near R = 0 becomes negative, 
and an extremely weak clockwise circulation develops near R = 0, as e decreases from 
e6. The flow pattern for e, < e < e6 is sketched in figure 8 ( b ) ,  where the boundary 
between the two circulations is at the radius where vgi = 0. At E = e7, vgi = 0 at R = 1, 
and the counterclockwise circulation disappears. The remaining clockwise circulation 
is weak everywhere because G is small for R < 0.7 and vgi is small for R > 0.7. The 
streamlines for e8 < E < e7 are sketched in figure 8(c). As E decreases from e,, the 
magnitude of vBi at  R = 1 again becomes significant and its effect is magnified by 
the large value of G near R = 1. Therefore, a slight decrease in E from e7 draws all 
the streamlines into the free shear layer and again establishes the strong clockwise 
circulation near R = 1. Thus is only slightly less than e7, and the flow is again 
clockwise circulation around the streamlines in figure 8 ( a )  for e < e8. 
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FIGURE 7. Sketches of the streamlines for the meridional motion driven by the Hartmann-layer 
pumping. The lines a t  5 = 0 and at 5 = 1 represent radial flow in the Hartmann layers on the crucible 
bottom and on the crystal face, respectively, while the lines at R = 1 represent axial flow in the 
free shear layer. (a) E > 1 (clockwise circulation), el < E < 1 (counterclockwise circulation) and 
E < e6 (clockwise circulation), (b) e2 < E < el,  (e) e3 < E < e2, (d )  e4 < E < e3 and (e) e5 < E < e4. 
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y = 4.643 

€1 -0.1226 
€2 -0.3809 
€3 -0.5404 
€4 - 1.0725 
€6 -25.04 
€8 - 0.1507 
€7 -0.7271 

y = 8.125 

-0.0499 
-0.2725 
-0.4870 
-0.9769 
-4.006 
-0.0604 
-0.6474 

y = 16.25 

-0.0059 
-0.2085 
-0.4371 
-0.8898 
-2.291 
-0.0070 
-0.5748 

TABLE 2. Values of the crystal-crucible rotation ratio at which the flow 
pattern changes (see figures 7 and 8) 

Since oxygen enters the melt from the crucible, and since the diffusion of oxygen 
in silicon is extremely weak, the two-cell circulation in figure 7(b)  may prevent 
oxygen-rich fluid from reaching at least the centre of the crystal face. To protect as 
much of the crystal as possible, we want to reduce E as much as possible, without 
causing the clockwise circulation cell to reach the crucible, i.e. we want E slightly more 
than e2. Therefore, we choose E = -0.38 for y = 4.643 as the example to illustrate 
the superposition of the meridional motions driven by the Hartmann-layer and inner- 
core centrifugal pumping. The streamlines for this case and for three different melt 
depths are presented in figure 9. Since we now have values of b/a,  the streamlines 
are plotted with the proper ratio between the axial and radial scales. In figure 9 (a), 
b/a = 0.5, which corresponds to a late stage in the growth of a crystal (melt 
depth = 2 cm for an 8 cm diameter crystal). Since = 0.25, the contribution of 
the inner-core pumping is very small, and the flow pattern is primarily due to the 
Hartmann-layer pumping. The steps in $ for $ > 0 are ten times those for $ < 0, 
so that the streamlines above the $ = 0 line represent an extremely weak clockwise 
circulation under the crystal face, out to R = 0.827. Less than a quarter of the flow 
in the bottom Hartmann layer reaches the crystal face near R = 1, while the rest 
circulates through the free shear layer and inner core. 

Going backward through the growth of a crystal to the earlier stage when b/a = 1 .O, 
we have the streamlines given in figure 9 (b). The principal effect of the now stronger 
inner-core pumping is the addition of a streamline ($ = 0.28) closing entirely through 
the inner core and free shear layer. The addition of this streamline pushes the other 
streamlines away from the free shear layer and raises the points where the streamlines 
$ = 0.08 to 0.24 leave the free shear layer. For E = -0.38 and y = 4.643, vgi = 0 at 
R = 0.62, so that there is a weak clockwise circulation for R < 0.62 due to the inner- 
core pumping. For b/a = 1.0, this circulation pulls the negative streamlines down 
very slightly. 

Going to an even earlier stage in the crystal growth when b/a  = 2.0, we have the 
streamlines given in figure 9(c). The inner-core pumping more than doubles the 
counterclockwise circulation near R = 1, with the streamlines for $ = 0.3 to 0.6 
closing through the inner core and free shear layer, and with the streamlines for 
$ = 0.06 to 0.24 all leaving the free shear layer near the top. The effect of the weak 
circulation for R < 0.62 is to pull the streamlines for $ = - 0.002 to - 0.006 far down 
towards the bottom, but not to increase the clockwise circulation here. 

The streamlines for y = 8.125 with E = -0.27 or for y = 16.25 with E = -0.20, and 
for b/a = 0.5, 1.0, 2.0, look very much like those presented in figure 9, except that 
the weak clockwise circulation above the $ = 0 line becomes even weaker as y 
increases with E slightly above e2 and virtually disappears for y = 16.25. 
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FIGURE 8. Sketches of the streamlines for the meridional motion driven by the inner-core pumping. 
The lines at R = 1 represent axial flow in the free shear layer. (a)  E > 1 (clockwise circulation), 
E& < E < 1 (counterclockwise circulation) and E < eg (clockwise circulation), ( b )  e7 < E < es and (c) 
e8 < E c e7. Dashed lines represent weaker circulation than solid lines. 

The great importance of the electrical conductivity of the crystal is revealed by 
contrasting the correct streamlines in figure 9 ( c )  with the corresponding, erroneous 
streamlines in figure 10(a) for a crystal which is an electrical insulator. If we 
erroneously take crs = 0, then w = 0.5, and wfi = %( 1 + 8) .  The inner core rotates as 
a rigid body with the average of the angular velocities of the crystal and crucible. 
There is no centrifugal pumping in the inner core, because there is no shear in the 
azimuthal motion here, and G(R)  = 0 in (32). The inner-core motion is driven entirely 
by the centrifugal pumping in the Hartmann layers. With the correct value of us, 
the inner core is more synchronized with the crystal rotation rate, so the insulating 
crystal solution underestimates the jump in wg across the Hartmann layer on the 
crucible bottom and overestimates this jump across the Hartmann layer on the 
crystal face, with corresponding errors in the amount of centrifugal pumping in these 
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FIGURE 9. Streamlines for y = 4.643 and E = -0.38. The lines a t  z = 0 and a t  z = b represent radial 
flows in the Hartmann layers on the crucible bottom and on the crystal face, respectively, while 
the lines a t  R = 1 represent axial flow in the free shear layer. In all three figures, streamlines above 
the $ = 0 line correspond to $ = -0.002k, for k = 1 4 ,  and represent clockwise circulation. 
Streamlines below and t o  the right of the 9 = 0 line represent counterclockwise circulation with 
positive values of @ which are different for each figure. ( a )  b/a = 0.5 with positive values of 
$ = 0.02k, for k = 1-13, (b) b/a = 1.0 with positive values of $ = 0.04k, for k = 1-7, and (c) 
b/a = 2.0 with positive values of 9 = 0.06k, for k = 1-10. 

layers. These errors are evident in the contrast between the streamlines in figures 9 (c) 
and 10 (a). The role of the crystal conductivity is further illustrated by the streamlines 
for counter-rotation with equal angular velocities ( E  = - 1). Figure 10(b) presents the 
correct streamlines for y = 4.643 and b/a = 2.0, while figure lO(c) presents the 
corresponding, incorrect streamlines for en insulating crystal (y = 0) and b/a = 2.0. 



262 

0 

= 0.01 

L. N .  Hjellming and J .  S. Walker 

= 1  

= 0.24 

I 

- 1.6 

FIQIJRE 10. Streamlines for bla = 2.0. The lines at z = 0 and at z = b represent radial flows in the 
Hartmann layers on the crucible bottom and on the crystal face, respectively, while the lines at 
R = 1 represent axial flow in the free shear layer. ( a )  y = 0 (us = 0) and 6 = -0.38. $ = 0.01, 0.03 
and 0.06k, for k = 1 4 .  (b)  y = 4.643 and E = -1.0. $ = -0.05, -0.1 and -0.2k, for k = 1-8. ( c )  
y = 0 (us = 0) and E = -1.0. $ = f O . O 1  and *0.03k, for k = 1-5. 
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Several previous papers present similarity solutions for the flow in a half space of 
an electrically conducting fluid bounded by an infinite, rotating wall, with a uniform 
magnetic field applied perpendicular to the wall. For example, Kakutani (1962) 
presents the solutions for such flows for an electrically insulating wall. Conservation 
of mass and of electrical charge in the half space occupied by the fluid imply that 
both the axial velocity and the excess charge are independent of the radial coordinate. 
This radial uniformity reduces the governing boundary-value problem to a set of 
equations which admit similarity solutions for the flow field. 

If the rotating, insulating wall is replaced by a rotating wall with some electrical 
conductivity, then the solution to the problem governing the electrical potential 
function in the wall requires a radial variation which does not vanish at the interface 
of the wall and the fluid. Since the electrical potential function must be continuous 
at this interface, the excess electrical charge in the fluid can no longer be independent 
of the radius. Indeed for an infinite wall, the continuity of electrical potential implies 
that either the excess charge in the fluid becomes unbounded as the radial distance 
from the axis increases or that all the fluid, even that infinitely far from the wall, 
rotates as a rigid body with the wall. Both possibilities are physically unreasonable. 

The similarity solution for an infinite, rotating wall is intended to approximate the 
flow in some small neighbourhood of the axis of rotation for a rotating wall with finite 
radius. This approximation is valid if a change in a variable at  a large radius has 
negligible effect on the variables at small radius. In fluid dynamics, this is frequently 
true. However, for electrical variables, this is more often not the case. Electrical 
problems involve complete electrical circuits with the electrical current and voltage 
at any point dependent on the entire circuit. With an infinite, rotating, electrically 
conducting wall with a perpendicular magnetic field, the electric field in the wall 
increases with radius. Thus the enormous electrical field a t  large radius totally 
overwhelms the variables at  small radius, giving a completely different flow at small 
radius than that for a wall with a finite radius. For rotating, electrically conducting 
walls, the outside radius is important, no matter how much larger it is than the 
boundary-layer thickness. The electrical potential and excess charge in the fluid are 
coupled to the variables in the wall and the excess charge must vary radially. Since 
the outside radius is always important, physically relevant similarity solutions are 
not possible. 

5. Meridional motion in the free shear layer 

the asymptotic expansions 
For the free shear layer, we introduce the same radial stretching, g = Mi(r-a) ,  and 

V, = Miv,p + + M-~v;, + o ( M - ~ ) ,  vr = vrf + M%;f + M-'v:f + O ( M 3 ) ,  

j, = j, + M-$Ae + M-lj& + O( H2), p = M+pf + M-lp; + M - $ I ;  + O( M-,) .  

With the terms multiplied by N-' replaced by zeros and with T = 0 for the isothermal 
motion, (2a, c, d, g) become 
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and the same equations with a prime or a double prime added to each variable. Here 

Matching the outer-core solution (26) gives the boundary conditions 

V Z f + 0 ?  v?.f+o, Pf’H,? a s < - Q ,  (35) 

and the same conditions with a prime or double prime added to each variable. Here 

H4 = a<, Hi = g, I-I: = 0. 

Matching the inner-core solutions (27,31,32) gives the boundary conditions 

vzf+O, vrf+H5, pf+H8, as<+-Oo, (36) 

and the same conditions with a prime or double prime added to each variable. This 
matching also gives pi(a) = 0, which determines the constant of integration when 
(27d) is integrated. Here 

H5 = Hs = 0, H i  = $,(a, z) ,  

where C, and C, represent O(M-i) and O(M-i) constant pressures in the inner core, 
while C,, C,  and pi(a) are determined as parts of the free-shear-layer solutions. The 
actual inner-core pressure is 

p = pi(r) +it-%’, + M-lp;(r) + M-tC, + O ( W 2 ) ,  

but there are no O(M-1) or O(M-j)  inner-core velocities, electric currents or electric 
potentials. 

The 0(1) radial velocity in the intersection region a t  r = a on the crucible bottom 
is given by the term 

plus the expression (28a) with r and vBi replaced by a and vef(<, 0) ,  respectively. With 
this solution, with both radial and axial stretching, with integration across the 
intersection region and with the boundary condition (3b), (2d) gives the boundary 

vrf(C,O) [1 - ~ X P  (-211, 

conditions 

vzf = vLf = 0, at z = 0, (37 b, c )  

for all 1;. The O( 1)  radial velocity in the intersection region on the crystal face is given 
by the term 

plus (28b) evaluated at r = a ,  because the solution (25a) gives v,(<, b) = vBi(a), for 
< < 0. Now ( 2 4  and the boundary condition (5b) give the boundary conditions 

vrf(<, b )  [1 - ~ X P  (Z’)l, 

VZf = VLf = 0, VZf ’/ = -- at z = b,  for y < 0. (38 a-c) 
a< ’ 
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For the intersection region at r = a on the free surface, the jumps in normal velocity 
and pressure are O(M-3) and O(M-2),  respectively (Hays & Walker 1984), so that the 
boundary conditions (4a, e) can be applied directly to the present asymptotic 
solutions for the free shear layer. Since p varies through the free shear layer, the free 
surface is deflected to the position 

z = b + M-vf (5) + M-'f;(c) + O(M-i),  

where the boundary condition (4e) gives 

The boundary condition (4a) gives the boundary conditions 

for c > 0, and for F = O(1). If F = O(Mb), then vLf = 0 at z = b, and v;~ is given by 
the condition (39c). 

For the unprimed variables, we introduce the streamfunction Y( 5, z),  where 

. a~ ay 
az ac . vrf = -Iep = -, vzp = -- 

When we introduce (34c, 40) into the z-derivative of (34a), we obtain the equation 

a 8 y  a 4 ~  aHl 
az2 a 5 4  aZ * 

---=- 

The boundary conditions (35,36,37 b, 38a, 39b) become 

Y-tO asc+km; Y=O a tz=O,b .  

Since Hl involves v,,(a), it  depends on the parameters y and E .  However, if we 

1 1 
introduce 

Y =  -(a"v&) 4a Y1+,(a-v,)2Y2, (43) 

where v, is evaluated at  r = a, then each function Yl or Y2 is governed by (41) with 
aHl/az replaced by the term [e/(b-z)2 times one or E, respectively, and by the 
boundary conditions (42). Therefore, Yl and Y2 are functions of 5 and z which 
depend only on the parameter b. The solutions are 

03 

ul, = b z [Ak(-~) - -k+l (z) l - (b-z)AO(z) ,  (44) 
k-0 

where hk(z) = erf[#2kb+b-z)b], 

and 
rz 00 r b  

(45) 
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The velocities and the electric current are obtained by substituting the solutions 
(43-45) into (40). The pressure is obtained by introducing (40a) into (34a), by 
integrating the latter with respect to [ and by using the condition (35) to determine 
the function of integration. 

The key to the solutions (4345)  is again the axial variation of v8, which is 
represented in (41) by aH,/az. In  the free shear layer, vgf varies from vw(a) at y = - 00 

to a at g = 00 for every value of z, but the solution (25a) accommodating this jump 
involves a vsf which is constant along the parabolas 5 = C,(b-z)t, for different values 
of the constant C,. In particular, if we define the edges of the free shear layer as the 
points a t  which vfl deviates from the adjacent core values by 1 yo of the total jump, 
then the edges are at c[ = f4.66(b-z);. Near z = b,  the layer thickness is small and 
the jump occurs over a small radial distance but, near z = 0, the layer thickness is 
large and the jump occurs over a large radial distance. In  order to illustrate the effects 
of this axial variation on the centrifugal force, we take vei(a) = --a, although the 
argument is true for any v&(a). For our special example, vet near z = b is equal to 
a sgn (5) everywhere except near 6 = 0, where i t  accommodates the jump with a large 
velocity gradient. Therefore, vQP = a2 for all values of 5 except very near g = 0, and 
the net centrifugal force near z = b is large. Near z = 0, vfl deviates from a sgn (Q 
for a long distance on either side of 5 = 0 and accommodates the jump with a very 
gradual transition. Therefore v& < a2 over a large distance near = 0, and the net 
centrifugal force near z = 0 is small. The pressure difference across the free shear layer 
is independent of z ,  because the pressures in both cores are independent of z ,  so the 
pressure difference can only balance an axial average of the net centrifugal force. Near 
z = b, the net centrifugal force is larger than the pressure difference, and there is a 
positive net radial force. Near z = 0, the net centrifugal force is smaller than the 
pressure difference, and there is a negative net radial force. This imbalance drives 
a clockwise circulation entirely inside the free shear layer, i.e. outward flow near the 
crystal edge and inward flow near the crucible bottom with the streamlines confined 
to the layer. 

The solution form (43) indicates that the details of the meridional circulation in 
the free shear layer depend upon E and y .  However, we can extract certain global 
characteristics of this circulation without knowing the solutions (43-45). We introduce 
the expressions (20,25a,40a) into (34a), we integrate the latter from = --oo to 
6 = CO, using the conditions (35,36) to evaluate p, here, and we integrate again with 
respect to z. The boundary conditions (42) at z = 0, b then determine the constant 
of integration for the second, indefinite integral, and C,, which is the O(M-i) inner- 
core constant pressure balancing the axial average of the net centrifugal force in the 
free shear layer. The results are 

C,  = f (2)fn-:bb(l-~)~[1 -~( i ) ] ' ,  (46a) 

where E = z/b, as before. The inner-core pressure C, is always positive. Consider a 
fictitious pressure distribution based on H4 and H,,  

pf = a[ for 5 > 0, 

which would exactly balance the centrifugal force associated with a fictitious velocity, 
vef = v,i(a), for 5 < 0, and vgp. = a, for 5 > 0. However, the actual v8f is more gradual 
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Sketch of the in the free shear layer. 

than this step change in azimuthal velocity, so that the net centrifugal force is less. 
Therefore, the step change in pressure gradient (47) provides too much net radially 
inward pressure force, and C, is the increase in the inner-core pressure needed to 
maintain overall balance with the actual centrifugal force. 

The expression (46b) represents a radial average of the streamfunction a t  each 
6 and suggests the streamlines sketched in figure 11. The expression (46b) has been 
used to estimate the locations of the streamlines at y = 0. The centre of the circulation 
is slightly above the middle at  6 = 0.555. Streamlines of this form in a radially thin 
region beneath the crystal edge are evident in the figures 1 (b, c) presented by Langlois 
& Lee (1983). The details of this circulation are provided by the solutions (4345) 
for different values of e, y and b,  but figure 11 and the expressions (46) provide a rough 
picture of how the free-shear-layer circulation varies with these parameters. The 
circulation is clockwise for every situation. The value of w(1)  depends only on y .  
Therefore, a graph of the total volumetric flow rate in this circulation as a function 
of 8 is a simple parabola with zero flow at E = 1 (iso-rotation) and increases rapidly 
as e changes from 1 in either direction. As B increases, w(  1) decreases from 0.5 to 0, 
so that C, increases. However, a constant, O( l) ,  dimensionless flow rate represents an 
actual flow rate which varies as B-2. Therefore the actual flow rate varies as 
[l - ~ ( l ) l ~ B - ~ .  For example, relative to the actual flow rate for y = 4.643, those for 
y = 8.125 and 16.25 are 0.359 and 0.0979, respectively, for the same e and b.  The 
expression (46b) suggests that the flow rate varies as bi, so the free-shear-layer 
circulation decreases as the crystal is grown, and the melt depth decreases. 

The solutions (4345) represent a meridional circulation inside the free shear layer 
with an O(1) dimensionless flow rate, while the solutions (30-32) represent a 
meridional circulation through the inner core, Hartmann layers and free shear layer 
with an O(M-') flow rate. The former circulation involves a much larger flow rate 
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than the latter. However, the former involves circulation only inside the free shear 
layer, so that its only direct transport from the crucible to the crystal is at the crystal 
edge, where evaporation from the adjacent free surface keeps the oxygen concentration 
low. On the other hand, the much weaker circulation represented by the solutions 
(30-32) can involve direct flow from the crucible bottom to the crystal face in the 
inner core, so that there is no reduction of the oxygen concentration on these 
streamlines because of evaporation from the free surface. Therefore, the effect of the 
weaker circulation on the oxygen concentration in the crystal may be at least as great 
as that of the stronger circulation. 

The free-shear-layer variables with primes or double primes represent circulation 
with O(M-:) or O(M-') flow rates, respectively, so that their contributions to the flow 
inside the free shear layer are negligible compared to those of the variables without 
primes. However, these free-shear-layer perturbations are important because of their 
relationships to the circulation outside the free shear layer. There are certain 
assumptions about the free-shear-layer solutions which are implicit in the solutions 
presented in $4. The first assumption is that the 0(1) and O(M-i) flows inside the 
free shear layer do not produce comparable flows in the adjacent cores. The solutions 
(4345)  demonstrate that this is true for the 0(1) flow. We can draw the same 
conclusion about the O(M-4) flow without finding its solution. The equations (34) and 
the boundary conditions (35,36), with primes added, as well as the conditions 
(37c, 38b, 39c), constitute a well-posed boundary-value problem for the variables with 
primes. The flow is driven by the O(M-i) term in the centrifugal force represented 
by H i ,  by the effects of the curvature of the free shear layer represented by Hi and 
H j ,  and by the fact that the bounding streamline must follow the deflected free surface 
for 6 > 0 represented by the condition (39c). When we introduce the solutions (25), 
and we manipulate (34), we can show that the solutions can in fact satisfy the 
boundary conditions (35,36), which implicitly assume that there are no O(M-4) 
perturbations in the inner and outer cores. Therefore, the free-shear-layer variables 
with primes represent a meridional circulation with an O ( M 3 )  flow rate which is also 
entirely contained within the free shear layer. 

The equations (34) and the boundary conditions (35,36), with double primes added, 
as well as the conditions (37a, 38c, 39a) also represent a well-posed boundary- 
value problem, now for the variables with double primes. The solutions represent a 
circulation with an O(M-') flow rate, but this circulation is not confined to the free 
shear layer. Indeed, figures 7-9 assume that the free shear layer provides certain 
O(M-') flows between the Hartmann layers and the inner core in each case. Again 
we can show that the solutions of (34) can satisfy the boundary conditions (35-39), 
so that we need only show that the boundary-value problem implies precisely the 
O(M-l)  flows across the boundaries of the free shear layer, which are assumed in 
figures 7-9. 

The integral of the boundary condition (37a) from f; = - co to g = 00,  and the 
boundary conditions (24a, d ,  35,36) show that 

where &, is given by the expression (30a). The solution for the 0(1) radial velocity 
in the intersection region at z = 0 shows that this region accepts a flow of &,(a) from 
the Hartmann layer at z = 0, r = a, and delivers the same flow to the free shear layer, 
as indicated by (48). The boundary condition (36) with Hl indicates that the free shear 
layer provides the assumed O(M-') flow to or from the inner core. 
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To understand the O(M-') flow, &,(a), from the Hartmann layer on the crystal face, 
through the intersection region and into the free shear layer, we must consider the 
structure of the intersection region a t  the crystal edge. This region actually consists 
of two intersection regions: one adjacent to the free surface for 5 > 0 which satisfies 
the boundary conditions (4), and the other adjacent to the crystal face for 5 < 0 
which satisfies the boundary conditions (5,7c, d). These two intersection regions are 
separated by a corner region at the crystal edge, which has O(M-') x O(M-') 
dimensions in meridional planes and which matches any differences in the structures 
of the two intersection regions. There is no corner region at z = 0 because there is 
no physical discontinuity along the crucible bottom at r = a. The O(1) and O(M-f)  
tangential velocities, v g  and vt, are continuous through the intersection region on the 
free surface, so that this region makes no O(M-') or O(M-t)  adjustments to the 
tangential flows in the free shear layer here, i.e. its displacement thickness is zero to 
these orders. In  the intersection region on the crystal face, there are two O(M-') 
adjustments to the radial flow in the free shear layer at z = b. First, there is an 
exponential variation from wrp([, b) at 2' = - co to zero at  2' = 0, so that there is a 
boundary-layer flow deficiency. Since there is no corresponding deficiency for 6 > 0, 
the O(M-') flow deficiency corresponding to vrp(O, b), must enter the corner region from 
the free shear layer, flow radially inward into the intersection region on the crystal 
face and then feed gradually back into the free shear layer as v&, b) + O ,  as c+- co. 
The free shear layer sees a mass sink at  [ = 0, x = b. This O(M-') circulation due to 
the boundary-layer deficiency associated with the no-slip condition (5 a) is confined 
to the free shear layer, corner region and intersection region on the crystal face. 

The second O(M-') radial flow in this intersection region is that driven by the 
centrifugal force associated with the exponential variation of v g  from v&(a) at 
2' = - 00 to EU at 2' = 0. This part of the O(1) radial velocity in this region is given 
by the expression (28b)  evaluated at r = a, which corresponds to an O(M-') radial 
flow of &,(a). The flow &,(a) is fed into the free shear layer from the bottom 
intersection region over their entire O(M-4) radial dimension because w,(c, 0) varies 
gradually from v,(a) to a. However, the &,(a) from the top Hartmann layer flows 
through the top intersection region to the corner region with none flowing into the 
free shear layer from the intersection region, because urn((, b) = vgi(a) for all 5 < 0. 
Since there is no corresponding flow in the intersection region on the free surface, the 
flow &,(a) enters the free shear layer from the corner region and appears to the free 
shear layer as a mass source or sink at 5 = 0, z = b. 

The free shear layer must accept the appropriate mass sources and sinks at 5 = 0, 
z = b. When the solutions (40,4345) are introduced into the term azvrp/ae in H;' and 
into the term a2vZf/az2 in H i ,  these inhomogeneous terms are singular at 5 = 0, z = b, 
while all the other terms in H;', H i  and Hg are well behaved here. The solutions of 
(34), which accommodate these singular inhomogeneous terms, are themselves 
singular at 6 = 0, z = b, and these singularities involve exactly the flow rates into or 
out of this point needed for &,(a) and for the flow deficiency associated with vrp(O, b). 
Therefore, the free-shear-layer variables with double primes do complete the O(M-l)  
flow circuit as assumed in figures 7-9. These variables are able to accommodate the 
appropriate mass source or sink at the crystal edge because the O( 1) free-shear-layer 
flow solution involves singularities in the viscous terms which enter the O(A2-l) flow 
problem to provide just the correct singular driving terms. Therefore, if there were 
no 0(1) circulation inside the free shear layer, then this layer would not be able to 
complete the O(M-') flow circuit as assumed. The structure of corner regions and how 
they match singularities in the free-shear- and vertical-wall-layer solutions are 
discussed by Cook, Ludford & Walker (1972). 
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FIGURE 12. Sketch of streamlines in meridional planes with superposition of the circulations in 
figures 9 and 11 ,  and a buoyancy-driven circulation which is blocked by the free shear layer. Dashed 
lines represent much weaker circulations than solid ones. 

6. Discussion 
When we superpose the free shear layer's axial contributions to the O(M-') 

circulations in figures 7-9 and its own O( 1 )  internal circulation, the latter overwhelms 
the former. Therefore, the streamlines in the free shear layer always resemble those 
in figure 11, plus an additional streamline between the top and bottom, either to the 
right of the others, i.e. near the edge with the outer core, or to the left of the others, 
i.e. near the edge with the inner core. If the axial free-shear-layer flow in one of the 
figures 7-9 is upward, then the free-shear-layer circulation sweeps it towards the inner 
core, and the additional streamline is on the left. If this axial flow is downward, then 
the free-shear-layer circulation sweeps it towards the outer core, and the added 
streamline is on the right. If this axial flow is downward and there is flow from the 
free shear layer into the inner core, as in figure 7 ( e ) ,  then the flow from the top 
Hartmann layer enters the free shear layer and flows to the bottom near the edge 
with the outer core. At the bottom, this flow splits and part enters the bottom 
Hartmann layer for r < a, while the rest flows back up the free shear layer, but now 
near the edge with the inner core, and feeds into the inner core at various elevations. 

Ifthe crystal and the crucible have the same angular velocities (iso-rotation, 8 = l ) ,  
then the only meridional circulation is that due to buoyancy. This circulation consists 
of an axial upward flow inside the vertical wall layer at  r = 1 ,  radial inward or 
outward flow near the free surface or near the crucible bottom, respectively, and an 
axial downward flow under the relatively cold crystal face. This circulation pattern 
is evident in the figures 5 (b ,  c) and 6 (M) presented by Langlois & Lee (1983) for the 
meridional circulations with no rotations. This circulation involves a dimensionless 
flow rate which is o(vbc), where vbc = 0.052. Since vbc is independent of B, the actual 
flow rates due to buoyancy decrease as B-2. In figures 6 ( c ,  d )  presented by Langlois 
t Lee (1983), there are nine and three streamlines for B = 0.1 T and B = 0.2 T, 
respectively. The flow pattern also changes as B increases because the contribution 
of convection, relative to that of conduction, decreases as the PBclet number 
decreases. 
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When we introduce a differential rotation between the crucible and the crystal 
(8 =!= l ) ,  the temperature distribution is changed because of the thermal convection 
with the meridional motion due to the centrifugal force. However, the basic flow 
pattern for the buoyancy-driven flow remains qualitatively the same. When we 
superpose the circulations due to buoyancy and centrifugal force, the resultant flow 
depends on the relationship between the radial velocities in the free shear layer due 
to the centrifugal force and the radial velocities due to buoyancy at r = a. These 
velocities are in opposite directions both near the crystal edge and near the crucible 
bottom. If the centrifugal-force velocities are larger than the buoyancy ones, then 
the free shear layer blocks the buoyancy circulation, so that it cannot penetrate into 
the inner core. If the centrifugal-force velocities are smaller, then the free shear layer 
deflects the buoyancy streamlines towards z = ?$I at r = a. Some of these streamlines 
that were near z = ?$I for r > a close at r = a, but the streamlines that were near the 
free surface and the bottom for r > a pass through the free shear layer and return 
to their original elevations once inside the inner core. The effect of this buoyancy-flow 
penetration into the inner core is to bring fluid, which is low in oxygen because it 
has travelled along the free surface, into the part of the inner core near the crystal 
edge. This flow does not penetrate far beyond the crystal edge because the isothermal 
crystal face quickly cools it, so that it sinks towards the bottom. The result may be 
an unacceptable radial variation of oxygen concentration in the crystal. Therefore, 
it appears to be desirable to ensure that the centrifugal-force circulation is sufficiently 
strong to block the buoyancy-driven circulation a t  r = a. This could be achieved by 
increasing the magnitude of (1 - E) until blockage occurs. However, E is chosen in order 
to achieve a desirable flow pattern in the inner core, e.g. E = -0.38 for figure 9. For 
a fixed, non-zero value of (1-e),  the centrifugal force is increased relative to the 
buoyancy force by increasing 52, i.e. by increasing the rotation speeds of both 
the crystal and crucible while keeping the ratio of their angular velocities constant. 
The effect of increasing SZ is to decrease N and vbc, and to increase Pe. If we superpose 
the circulations in figures 9 and 11, and a buoyancy-driven circulation which 
is blocked by the free shear layer, we obtain the sketch of streamlines given in 
figure 12. 

Numerical solutions of the heat equation and the specific details of the buoyancy- 
driven flows will be presented in a future paper. The specific values of v f l  from the 
free-shear-layer solutions (40,4345) are not important here because they overwhelm 
the circulations driven by the Hartmann layer and inner-core centrifugal pumping. 
On the other hand, these values of vfl are very important when the buoyancy 
circulation is added because they must be larger than the buoyancy v, at r = a in 
order to block the buoyancy-driven circulation. Therefore, graphs of vf l  from the 
solutions (40,4345) will be presented in a future paper along with the solutions for 
the buoyancy-driven circulation. 

The weak electrical conductivity of the crystal plays a key role in determining the 
present solutions. For the present configuration with an axial, uniform magnetic field, 
the electrical generator in the problem is the axial variation of the azimuthal velocity 
in the column of fluid beneath the crystal. The azimuthal velocity across the axial 
magnetic field produces a radial voltage difference. When this velocity varies with 
z, as it must for any differential rotation (E =+ l),  then the voltage differences appear 
as radial batteries with different strengths at different elevations. The imbalance 
between batteries drives a meridional circulation of electrical current, and the crystal 
is one of the electrical resistors in the circuit for this current. 

For a Czochralski crystal grower with a steady, uniform, transverse magnetic field, 
the weak electrical conductivity of the crystal plays an even more important role. 
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With a transverse field, the bulk of the fluid has no O( 1) azimuthal velocity. The fluid 
is held by the field lines, and only the fluid in the Hartmann layers on the vertical 
crucible wall and in the boundary layers on the crucible bottom and on the crystal 
face have an O(1) azimuthal velocity which equals r a t  the crucible and Er a t  the 
crystal face. There is an O(M-') horizontal velocity along magnetic field lines from 
one side of the crucible to the other, which is driven by the azimuthal variation of 
the Hartmann-layer structure. 

If we consider a horizontal section through a crystal rotating in a uniform, 
transverse magnetic field, the halves of the section on opposite sides of the diameter 
perpendicular to the magnetic field are moving across the magnetic field lines in 
opposite directions. Therefore, the axial induced electric field, era x B, has opposite 
signs on opposite sides of this diameter. This electric field drives electric currents up 
and down the crystal on opposite sides of this diameter. A t  the crystal face, these 
currents enter the melt and produce an EM body force in the melt near the crystal 
face. With a transverse magnetic field, the crystal is the electrical generator, and the 
melt is the resistor in the electrical circuit. How the electrical circuit is completed 
through the melt and how the melt responds to the resultant EM body force are the 
keys to the flow in a Czochralski crucible with a transverse field. For the problem 
with a transverse field, the spherical shape of the crucible bottom and the concave 
shape of the crystal face are very important. If these surfaces were plane, the 
boundary layers on them would have O ( M 3 )  thicknesses, but the actual surfaces have 
Hartmann layers with O(M-') thicknesses. Solutions for this problem will be 
presented in a future paper. 

In our discussion of the present results, we have treated the ratio of resistances 
y as a function of magnetic field strength B, and have taken the electrical 
conductivity of the crystal as a constant, namely rs = 3.16 x lo4 mho/m. In reality, 
r, is a function of the concentrations of dopants and impurities in the crystal. Some 
impurities, such as aluminium, have particularly strong effects on the crystal 
conductivity. An increase in gs merely increases y as an increase in B would. To double 
y ,  we can double B or rs or the crystal radius aL, since y = rs BaL(rpu)-k Actually, 
us and B cannot be treated independently. Any change in the magnetic field strength 
changes the mass transport of dopants and impurities to the crystal. An increase in 
B may increase or decrease rs, so the variation of y with B is more complex than 
our simplified discussion implies. 
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